SECTION A. Project Title: High Assay Low Enriched Uranium (HALEU) Fuel Fab

SECTION B. Project Description and Purpose:

The objective of this work is to develop High Assay Low Enriched Uranium (HALEU) Fuel that includes, modifying an existing building for a new mission, feedstock development, and production of fuel. Oklo, Inc., is creating a process that will allow a mix of process development and fabrication of the metallic fuel. The detailed steps, equipment and process will be developed to allow fabrication of the fuel. All of the processes will take place at the Materials and Fuels Complex (MFC) located at Idaho National Laboratory (INL). The project is expected to be done at Radioactive Liquid Waste Treatment Facility (RLWTF) which is located at Materials Fuels Complex (MFC)-798. The first stages of development will evaluate the fuel fabrication process and evaluate the design and fit inside the MFC building. The fuel type will be metal based fuel. MFC-798 will be repurposed for renovation. MFC-798 has sufficient power supply to support the project needs along with the existing stack that will be sufficient for the project air emissions. The fuel source and gloveboxes won’t require additional shielding. Scrap fuel will be recycled to the greatest extent possible and interim storage will utilize the existing vault space available in MFC. Fuel fabrication equipment and fuel production costs will be funded by a third party Oklo, Inc. Oklo, Inc., will supply extensive gloveboxes, filtering, furnaces, casting, machining, and welding equipment based on mature INL processes equipment. Possible waste streams from the project include: chemical process waste, radioactive waste, potential purification waste and metal nuclear fuel waste.

The scope of work required to achieve this objective includes the following:

1. Providing project and construction management oversight.
2. Provide construction support including safety, quality, subsurface investigation, RadCon, and field supervision.
3. Developing the engineering and design documents.
4. Production of HALEU at the Fuel Conditioning Facility (FCF) for use in the fuel production.
5. Perform Documented Safety Analysis (DSA), produce environmental documents, permits and other required studies and reports.
6. Perform Contractor Readiness Assessment (CRA).
7. Perform Operational Readiness Assessment (ORA).
8. Testing and startup.
9. Subcontracting the demolition, construction, and equipment installation at MFC-798 that includes:
 a. Remove and replace block wall.
 b. Demolish tanks and associated piping, walkways, and pumps.
 c. Demolish exhaust and supply ducting.
 d. Demolish High Efficiency Particulate Air (HEPA) filtration systems.
 e. Demolish electrical.
 f. Perform building modifications to support fuel fabrication.
 g. Update electrical configuration to meet HALEU fuel production.
 h. Install new backup generator.
 i. Install new ventilation and exhaust systems including HEPA filters, dampers, ducting, controls, cooling systems, and other miscellaneous items.
 j. Install gloveboxes to support two production lines. Gloveboxes include casting glovebox, loading glovebox, and grouting/waste glovebox.
 k. Install equipment to support fuel fabrication including, casting furnace, work tables, cranes and lifts, machining equipment, settling furnace, storage racks, welders, vacuum system, and other miscellaneous equipment.
 l. Build transportation and storage containers.
 m. Disposal of waste materials.

BEA will provide the resources for all engineering, project management, and construction management resources. It is anticipated that fuel fabrication will be completed in 8 years. The gloveboxes and furnaces are long lead items and will be procured early to support the project team. Transuranic Waste (TRU) will be generated in MFC-798. There is an estimate of 0.000768% or 0.0384 kg per 5000 kg of fuel fabricated to be TRU waste from the input fuel from EBR-II exposed stock.

SECTION C. Environmental Aspects or Potential Sources of Impact:
Air Emissions

Air emissions are expected. The off gas that will be distributed will be the same as the existing metal fuel fabrication. The air emissions through the existing stack will be the same, however the volume of fuel produced could be larger than previous developmental samples. An Air Permitting Applicability Determination will need to be prepared to cover the new activity.

Discharging to Surface-, Storm-, or Ground Water

N/A

Disturbing Cultural or Biological Resources

N/A

Generating and Managing Waste

Waste will be generated. The work that will be done includes creating metal nuclear fuel waste. Other waste that will be generated will be chemical process waste, radioactive waste through process loss, and potential purification waste (fission products removed from the fuel in the process). The total generation of waste is expected to be 5000 kg. Approximately 0.0384 kg TRU waste per 5000 kg fuel fabricated will be generated. TRU waste will be generated in MFC-798 RLWTF.

Releasing Contaminants

Through the repurposing of the MFC-798 building, typical C&D waste is to be expected. Any waste from C&D that involves drainage into the sewer will be handled within disposal limits within the facility's permit. When chemicals are used during the project there is the potential for spills that could impact the environment (air, water, soil).

Using, Reusing, and Conserving Natural Resources

All materials will be reused and recycled where economically practicable. All applicable waste will be diverted from disposal in the landfill where conditions allow. Scrap fuel will be recycled to the greatest extent possible.

SECTION D. Determine Recommended Level of Environmental Review, Identify Reference(s), and State Justification: Identify the applicable categorical exclusion from 10 Code of Federal Regulation (CFR) 1021, Appendix B, give the appropriate justification, and the approval date.

For Categorical Exclusions (CXs), the proposed action must not: (1) threaten a violation of applicable statutory, regulatory, or permit requirements for environmental, safety, and health, or similar requirements of Department of Energy (DOE) or Executive Orders; (2) require siting and construction or major expansion of waste storage, disposal, recovery, or treatment or facilities; (3) disturb hazardous substances, pollutants, contaminants, or Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)-excluded petroleum and natural gas products that pre-exist in the environment such that there would be uncontrolled or unpermitted releases; (4) have the potential to cause significant impacts on environmentally sensitive resources (see 10 CFR 1021). In addition, no extraordinary circumstances related to the proposal exist that would affect the significance of the action. In addition, the action is not “connected” to other action actions (40 CFR 1508.25(a)(1) and is not related to other actions with individually insignificant but cumulatively significant impacts (40 CFR 1608.27(b)(7))

References: 10 CFR 1021, Appendix B to subpart D, items B3.6, "Small-scale research and development, laboratory operations, and pilot projects."

Final Environmental Assessment for the Use of Department of Energy-Owned High-Assay Low-Enriched Uranium Stored at Idaho National Laboratory (DOE/EA-2087) [January 2019].

Justification: The proposed R&D activities are consistent with CX B3.6 "Siting, construction, modification, operation, and decommissioning of facilities for small-scale research and development projects; conventional laboratory operations (such as preparation of chemical standards and sample analysis); small-scale pilot projects (generally less than 2 years) frequently conducted to verify a concept before demonstration actions, provided that construction or modification would be within or contiguous to a previously disturbed area (where active utilities and currently used roads are readily accessible). Not included in this category are demonstration actions, meaning actions that are undertaken at a scale to show whether a technology would be viable on a larger scale and suitable for commercial deployment."

"Final Environmental Assessment for Use of DOE-Owned High-Assay Low-Enriched Uranium Stored at Idaho National Laboratory (DOE/EA-2087 January 2019)."

NEPA coverage for the transportation and disposal of waste to WIPP are found in the Final Waste Management Programmatic Environmental Impact Statement [WM PEIS] (DOE/EIS-0200-F, May 1997) and Waste Isolation Plant Disposal Phase Supplemental EIS (SEIS-II) (DOE/EIS-0026-S-2, Sept. 1997), respectively. The 1990 ROD also stated that a more detailed analysis of the impacts of processing and handling TRU waste at the generator-storage facilities would be conducted. The Department has analyzed TRU waste management activities in the Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) (DOE/EIS-200-F, May 1997). The WM PEIS analyzes environmental impacts at the potential locations of treatment and storage sites for TRU waste; SEIS-II addresses impacts associated with alternative treatment methods, the disposal of TRU waste at WIPP and alternatives to that disposal, and the transportation to WIPP.

The environmental impacts of transferring LLW from the INL Site to the Nevada National Security Site were analyzed in the 2014 Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (DOE/EIS-0426) and DOE’s Waste Management Programmatic EIS (DOE/EIS-200). The fourth Record of Decision (ROD) (65 FR 10061, February 25, 2000) for DOE’s Waste Management Programmatic EIS established the Nevada National Security Site as one of two regional LLW and MLLW disposal sites.

Is the project funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act) ☐ Yes ☒ No

Approved by Jason L. Anderson, DOE-ID NEPA Compliance Officer on: 10/26/2021