Appendix C.6-73:

"C.6.2.10 HAW Denitrator, Packaging and Cask Loading Facility (P91)

"...... The denitrator would be a fluidized bed reactor. The evaporator bottoms, mixed with a 2.2M aluminum nitrate solution would be fed into the bed. Kerosene and oxygen would also be fed into the reactor to maintain the reactor temperature of about 600 °C. The aluminum nitrate reacts with the waste to form solid pellets (calcine)."

The Draft EIS provided a summary description of Project Number P91, HAW Denitrator, Packaging and Cask Loading Facility (listed in Table C.6.1-1 and more fully described in section C.6.2.10, page C.6-73).

The THOR™ steam reformer operates as an elutriating fluid bed. However, reference should be made to use of electrical heating and auto-thermal steam reforming for maintaining fluid bed operating temperatures of 450 to 700°C. The use of aluminum nitrate can be utilized in the Reformer, however, the use of such additives to prevent alkali; metal agglomerations are generally not necessary with the THOR™ Reformer.

P.S. COGEMA, Inc. Comments on the "Idaho High-level Waste and Facilities Draft Environmental Impact Statement (EIS)"

COGEMA, Inc. is pleased to submit the attached comments on the December 1999 draft "Idaho High-level Waste and Facilities Draft Environmental Impact Statement (EIS)".

As summarized in the attachment, there is a cost-effective, mature, industrial technology which can be used to solidify the INELI sodium bearing waste. This technology was not considered in the Draft EIS. COGEMA, Inc. encourages the Department of Energy to permit use of this technology in the Final EIS and Record of Decision (ROD).

If there are any questions or if additional information is needed, please contact me at the number referenced below, or Arvid Jensen (208-524-0466).

Sincerely yours,

Rhonne Smith
Executive Vice-President, Engineering and Technology

cc: Arvid Jensen
1.0 COGEMA, INC. COMMENTS

The December 1999 draft Idaho High-Level Waste and Facilities Disposition Draft Environmental Impact Statement (EIS) addresses methods for early processing of Sodium Bearing Waste (SBW). COGEMA Inc. submits the following comments:

1. There is a variant to the Draft EIS alternatives that can process the SBW into a glass waste matrix using industrially available technology. This mature technology option, which was not considered in the Draft EIS, can be accomplished at cost/schedule competitive to those already identified in the Draft EIS.

2. COGEMA, Inc. encourages the DOE to permit use of this mature industrial technology for SBW solidification, in the final EIS and ROD.

2.0 COMMENT BASIS AND JUSTIFICATION

2.1 System Description

2.1.1 Overall SBW Processing System

Figure 1 provides a general illustration of the proposed system, which is composed of the following major processes, and/or subsystems, which are all based on mature industrial technologies:

- **Off-gas Collection and Purification Processes**: This off-gas subsystem will service all of the other subsystems of the SBW processing system, and will provide particularly important support for certain subsystems (e.g., demineralization, vitrification, and canister filling).

- **Demineralization Process**: Formic acid will be added to incoming SBW to destroy nitrogen compounds (e.g., nitrates, etc.), prior to feeding SBW to the melter, for vitrification processing. Nitrogen gases resulting from demineralization process will be dealt with by the off-gas subsystem.

- **Mercury (Hg) Separation**: Mercury will be removed from the SBW, during the demineralization processing, and will be loaded into small containers, as a secondary waste product for later disposition.

- **SBW Concentration Process to Feed Melter**: SBW will be concentrated, mainly by removing some of the water, and fed to the vitrification subsystem (melter), as a dilute slurry (i.e., liquid containing some solids).

- **Glass Formers to Feed Melter**: Most of the materials needed to form the glass (waste form) matrix are not present in SBW, and will be formulated and added as a dry feed to the melter, in the form of a crushed glass (frit).

- **Vitrification Processing**: This is a combination of thermal and chemical processing that occurs within the melter. The melter, which is the key component of this subsystem, is a metal enclosure designed and fabricated to provide essential processing conditions. The melter has an internal heating system, a system to mechanically stir the incoming feed and glass melt, an external cooling system, and is linked to the off-gas system. The proposed vitrification subsystem uses a unique melter that has been developed by the French nuclear program over the past two decades and industrially applied during the last decade. It offers very substantial technical, cost and schedule advantages over melter designs that heat the melter by electrodes submerged in the glass (e.g., those currently operated by the U.S. DOE).

- **Canister Filling Process**: Glass waste form material that has completed processing in the melter is drained into thin-walled metal canisters. This process uses a French developed and industrially applied drain valve mechanism located in the bottom of the melter. The metal canisters will be, of a design, common in-type to canisters already being used by the U.S. DOE. Empty canisters will be fed into a carousel racking system, to support the high production rate of glass waste form.

- **Canister Sealing Process**: After being loaded with the molten glass waste form and allowed to cool, the canisters will be fully sealed by welding.

- **Canister Decontamination Process**: The canister exterior will be decontaminated to meet the requirements for storage, on-site intermediate storage and off-site transportation, for final disposal.

- **Lag Storage Process**: The overall processing system will include a handling system to provide temporary storage for a limited number of completed canisters (loaded with waste form), prior to their acceptance by DOE, in preparation for final disposition.

- **Load-out Process**: Canisters, from lag-storage, will be processed for transportation, in support of DOE preparations for final disposition.

The overall system will then have the following general processing flow: 1) feed preparation will include processing SBW (i.e., demineralization to destroy nitrogen compounds, remove some water to concentrate SBW) and providing glass forming materials in a dry feed to the melter), 2) perform vitrification processing in the melter, 3) drain resultant (molten) glass waste from melter into metal canisters, 4) after glass cools to a solid, seal canisters by welding, 5) decontaminate exterior of sealed canisters and 6) place canisters into lag-storage in production facility, in preparation for further disposition by DOE. The canisters of glass waste form (i.e., primary SBW disposal product) will be produced to comply with acceptance criteria for disposal in the DOE WIPP repository, in New Mexico (NM).

The supporting history of development and industrial application (French and licensees), in using combinations of these technologies to process nuclear wastes, will enable a highly integrated, highly automated and remotely operated system to be designed and implemented.

2.1.2 Vitrification Subsystem

Because of the importance of the vitrification subsystem, further description is provided for this subsystem. Figure 2 illustrates the basic features and general configuration of this subsystem. The melter vessel is a metal shell that is specially designed and fabricated to enable direct high frequency induction technology to be used to heat the feed and glass melt mixture, during the in-melter processing to create the glass waste form. The molten glass is purposely separated from the vessel wall by a layer of non-molten (cold) glass, which is created and maintained by selectively cooling the melter vessel wall. This allows high temperature operation and limits contamination of the subsystem equipment (i.e., melter vessel, etc.). This technology allows the melter to be small in size and have a very long, if not unlimited, service lifetime. During melter processing, the glass melt is also mechanically stirred, to enable high production throughput, by shortening the glass residence time in the melter and improving product quality by creating a more uniform temperature distribution and by limiting settling of any inclusions. When processing is in the melter complete, the glass waste form is poured into canisters, via a valve mechanism in the bottom of the melter vessel.

This vitrification subsystem is capable of melter operation over a broad range of temperature, because of the high thermal power release produced by direct induction in the glass. Using this combination of
technologies (i.e., induction heating, cold glass layer protection and mechanical stirring), this vitrification subsystem is capable of processing, at high production rates, a wide range of feed types, and a wide range of glass compositions, as well as, those for glass-ceramic, or ceramic waste forms. The unique design of the vitrification subsystem, particularly the melter, allows it to be small in size (e.g., 1-liter in diameter for the proposed system) and weight, high in throughput, low in maintenance and amenable to change-out, if needed. These are major advantages over designs for Joule heated melters that use electrodes submerged in the glass melt (e.g., those currently in use by the U.S. DOE). These design features combine to provide substantial benefits to costs (capital installation and operations) and to schedule (design, startup and production).

2.2 Major Advantages of Proposed Variant to Early Vitrification Option for SBW Disposition

2.2.1 Maturity of Technology

Overall SBW Processing System

As evident by the preceding description of the system’s subparts, this (SBW) processing system will use mature industrial technology for each stage of the processing, and will be modular in design and installation. Each part of the proposed SBW processing system (i.e., feed preparation, vitrification (melter, etc.), canister filling, sealing and decontamination, and off-gas collection and purification) will all use processes based on industrially mature technologies supported by extensive development testing and industrial production experience. Consequently, there is a high confidence that the proposed system offers a combination of performance advantages that are superior to the other options being considered in the EIS.

Vitrification Subsystem

The following discussion provides a more detailed overview of technological maturity, regarding the vitrification subsystem. Refer to Figure 1 for illustration of the overall system, Figure 2 for illustration of the vitrification subsystem, and Figure 3 for a cross-sectional illustration of the melter, as needed, during the following discussion.

The key portion of the proposed processing system is the vitrification subsystem, and within that subsystem, it is the melter, and its special combination of capabilities, that is most important. The melter design is based on extensive technological development in France and industrial application in France, as well as, several other countries. Since the 1980’s, the French Atomic Energy Commission (CEA) and COGEMA have teamed to develop and apply the technology associated with using an induction heated cold crucible melter to prepare glass or glass-ceramic waste forms for immobilizing nuclear wastes. The first-generation of this technology is referred to as the Cold Crucible Melter (CCM) technology, with over 5000 hours of operation, which has qualified the system and its subparts. Development has matured to where this is industrially applied technology. In the last several years, this technology has been provided to domestic and international customers for nuclear (e.g., La Hague, France, Italy and South Korea) and non-nuclear applications (Ferro-France, etc.). The installation at La Hague (France) will go into production in 2003, to vitrify concentrated solutions of very corrosive wastes, and the process is currently being qualified on a full-scale pilot system. The second-generation...
features of the French melter design that also significantly reduce the cost and complexity of their eventual disposal.

Developing the ability to mechanically stir the waste form melt region, which is used in both the CCM and ACCM technology, resulted in significantly increasing waste form production rates, and improving both temperature and composition uniformity within the melt zone. The increased production rate is achieved by reducing the time to process feed into a molten glass condition and by reducing the time to complete the glass making process. The high production rate capability (e.g., 100 kg/hr of glass using liquid feed and 400 kg/hr of glass using solid feed) of the proposed SBW processing system would provide important benefits regarding cost and schedule, for performing this task. The cost and schedule advantages will be discussed in more detail in Section 2.2.2 and 2.2.3, respectively. The improved composition uniformity includes the important ability to keep certain insoluble constituents such as noble metals particles, inorganic crystals, etc., in suspension within the glass-melt. The settling of such material into the bottom region of other types of melter designs has been an on-going development problem in such systems, both in the U.S. and in elsewhere. The SBW is not expected to present any significant challenges in regards to such undissolved solids within the glass waste form. The fact that finished glass exits both the CCM and ACCM systems by a bottom drain valve also helps ensure that any tendency for material to settle towards the bottom of the melter vessel will not result in accumulations that could become a problem. The combination of technologies used in the French (CCM and ACCM) melter designs has enabled high production throughput to be achieved with melter vessels that are relative small in size and low in weight, which facilitates maintenance and change-outs, as needed. These capabilities have the further benefit of requiring less space to install such components into existing hot-cell facilities or new facilities. It also enables the system to be serviced using lower capacity and thus less costly equipment (e.g. service crane, etc.).

The proposed design for processing the SBW calls for using the ACCM technology. The primary advantages of using the ACCM technology, in this application, are as follows:
- All of the CCM advantages over other waste form processing melts
- Broad range of processing temperatures
- Higher production throughput than other technologies
- Smaller size and lower weight of components
- Long service lifetimes
- Easier to maintain and change out, if needed
- Higher throughputs than the CCM technology (e.g., more than 100 kg/hr with liquid feed)

2.2.2 Cost The proposed system will use processes that are widely recognized as being technical mature and for which there is extensive industrial experience in applying them to processing nuclear materials. In particular, the small size and weight, high throughput capacity, long service lifetime and ease of maintenance of the ACCM technology enables the design of the proposed system to offer very substantial cost advantages (i.e., capital and operational). One of the most significant cost advantages is that the system could very likely be installed in an existing facility. The French program (COGEMA) has recent experience with retrofitting vitrification technology systems (i.e., CCM) into existing nuclear facilities in other countries, and the cost advantages are significant.

The proposed system for processing SBW is believed to be a variant option that offers significant cost advantages over the options portrayed in the (12/1999) draft EIS, regarding the early vitrification alternative.

This vitrification facility could be effectively attached to the existing New Waste Calcine Facility (NWCF), as an extension, taking benefit from the already existing installations for utilities, personnel support and waste feed supply. The estimated cost for design, construction and startup, of this extension, is 200M dollars; Figure 4 illustrates the estimated funding profile for this work. Based on French experience it is estimated that it will take approximately 20M dollars per year to operate the proposed system, during production.

2.2.3 Schedule Figure 5 illustrates the estimated schedule for the processing SBW with the proposed system. As this schedule illustrates, if the design of the proposed system is initiated before the end of year 2000, the processing could be completed in time to meet the State Agreement (Idaho-DOE) date of 2012, for SBW.

2.2.4 Waste Products Cogema, Inc estimates the proposed SBW processing system will produce approximately 360 cubic meters of the primary disposal product (i.e., canistered glass waste form). The waste form will be a borosilicate glass. The canister will be made of stainless steel and designed as a thin-walled closed right-circular cylinder, which will be fabricated with one end closed and the other left open for loading in the waste form and then sealing. These decisions, regarding the proposed primary waste form and canister, are extensively supported by over two decades of U.S., European and Asian experience regarding nuclear and hazardous waste disposition. Such experience includes evaluating candidate waste forms, selecting preferred waste forms, continued process and product development, and selection of glass, and especially borosilicate glass, as a preferred waste form. During filling with molten waste form, the canister will be positioned upright, with the open end at the top, when being filled with molten (glass) waste form. After cooling, each loaded canister will be fully sealed, by welding, and then externally decontaminated, in preparation for lag-storage and then follow-on disposition by DOE (i.e., on-site interim storage and/or final disposal). The primary waste disposal product, as well as any secondary product, will be produced so as to comply with acceptance criteria for disposal of remotely handled – transuranic waste (RH-TRU) in the DOE WIPP facility, located in New Mexico.

3.0 SUMMARY

The proposed system, for processing SBW, offers several major advantages compared to option candidates evaluated in the 12/1999 draft EIS, for the Non-Separations alternative.

The proposed system will use a set of industrially mature processes whose combination offers a high confidence for achieving the customer’s technical, cost and schedule goal. The unique set of technologies used in the vitrification subsystem will enable this subsystem to be small in size and weight, have a broad range of capability for processing feed into glass, and will have high production throughput and operational reliability. The overall system will be modular, highly integrated and automated and remotely operated. The modular design and size and weight advantages of key
components would enable it to be installed in an existing facility, providing significant cost and schedule advantages. The industrially mature nature of the processes, high production throughput, modest sizing, low maintenance and servicing change-out capability will provide significant cost advantages (i.e., capital and operational). The installation and operational advantages of the system could enable the State Agreement date of 2012 to be met. The waste disposal products will comply with acceptance criteria for disposal as RH-TRU in the DOE WIPP facility, in NM.

It is for these reasons that COGEMA, Inc. encourages the DOE to permit use of this mature industrial technology for SBW solidification, in the final EIS and ROD.

Figure 4 Estimated Cost Profile

Figure 5 Estimated Schedule for SBW Processing

SBW IDAHO / ACCM

SCHEDULE

- Facility Design & Build
- Conceptual Design
- Preliminary Design
- Final Design
- Licensing
- Procurement & Construction
- Startup
- Operations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$4M</td>
<td></td>
<td>$43M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$9M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$10M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$50M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$52M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$52M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$15M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEAR: YEAR 1, YEAR 2, YEAR 3, YEAR 4, YEAR 5, YEAR 6, YEAR 7, YEAR 8
occur simultaneously across the entire Big Lost River watershed. This assumption is not consistent with the meteorology of the region and again casts into question the validity of the assertion that the assumptions represent conditions that have a 1% chance per year of occurring. The data that is presented in the report shows a decrease of 12% between Arco and the INEEL diversion dam.

An internal consistency problem presents itself with respect to the 2 hour hydrograph for Box Creek. If the peak can go at least 50 miles from Howard Ranch to Arco in 6 hours (as asserted in the text) why can't it go the 3.5 miles to Box Canyon in 2 hours? The resulting attenuation of 170 CFS would seem to be legitimate and required given data presented earlier.

pg 15 - The channel width discussion here indicates a serious inconsistency. If the Doherty equation is used here, a channel width of 144 ft, is indicated but a bankfull width of only 38 ft was measured. The Doherty equation has a large uncertainty associated with it that must be quantitatively addressed. A more serious inconsistency is the selective application of the bankfull discharge technique cited as "Hornberg, 1900". A similar estimate of "bankfull" flow at the INEEL would lead to typical estimates of 2,000 CFS for the 100 year flow. Why wasn't this important data point considered?

pg 16 - "These assumptions would produce the largest possible flow-volume estimates for this method." The largest possible flow is by definition not a 100 year event. Also note that Bulletin 178 is not intended for the determination of flow volumes. The contained probability of a 100 year flow and a 60 day duration and a simultaneous arrival of subbasin peaks at Arco and the Howard Ranch peak arriving at Arco unattenuated and arriving at the INEEL diversion dam unattenuated is clearly much less than 1%.

<table>
<thead>
<tr>
<th>HLW EIS Web Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Tom Oliver</td>
</tr>
<tr>
<td>Affiliation: Studsvik, Inc.</td>
</tr>
<tr>
<td>Address: 111 Stonemark Lane</td>
</tr>
<tr>
<td>City, State Zip: Columbia, SC 29210</td>
</tr>
<tr>
<td>Telephone: 803-721-6220</td>
</tr>
<tr>
<td>Date Entered: 04/14/00 06:45:19</td>
</tr>
<tr>
<td>Comment: Studsvik, Inc. has recently commercialized a large scale high pressure steam reforming fluid bed technology for the processing of mixed wastes generated by the nuclear power stations at its processing facility in Sennett, TN. This technology is also directly applicable to the processing of a large quantity of the mixed wastes presently within the DOE including the SBW at INEEL. Under separate cover, Studsvik has submitted comments on the draft EIS that requests that steam reforming, an alternative to incineration, be considered in the final EIS. This technology was not fully deployed when the technical evaluations for the EIS were performed, however it is now a fully proven, fully deployed technology that offers significant advantages over present processing methods and those discussed in the draft EIS.</td>
</tr>
</tbody>
</table>